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ABSTRACT 

Continuity equations are used to  clarify relationships between air motions and distributions of accompanying 
precipitation. The equations embody simple modeling of condensation and evaporation with the following assump- 
tions: (1) water vapor shares the motion of the air in all respects; ( 2 )  condensate shares horizontal air motion, but 
falls relative t o  air a t  a speed tha t  is the same for all the particles comprising precipitation a t  a particular time and 
height; (3) the cloud phase is omitted. 

After a review of one-dimensional models, the distributions of condensate in two-dimensional model wind fields 
are discussed with regard to  instantaneous evaporation of condensate in unsaturated air and t o  no evaporation. 
The most nearly natural cases must lie between these extremes. The mcthods for obtaining solutions are instructive 
of basic interactions between air motion and water transport. The steady-state precipitation rate from a saturated 
horizontally uniform updraft column is shown to equal the sum of the vertically integrated condensation rate and a term 
that  contains the horizontal divergence of wind. The latter term becomes relatively small as the ratio of precipitation 
fall speeds to  updrafts becomes large. A basis for some studies of precipitation mechanisms, the equation N(l74-w) 
=const., where N i s  the number of particles comprising precipitation a t  a particular point in space and time, Vis  their 
fall velocity, and w is the updraft, is shown to imply violation of continuity principles unless variatioiis in w are quite 
small. Continuity equations are applied to  radar-observed convective cells (generators) and their precipitation trails, 
and to  radar-observed precipitation pendants (stalactites), and provide bases for estimating the strength, duration, and 
vertical extent of the associated vertical air currents. The stalactite study also discloses how horizontal variations of 
precipitation intensity arise during precipitation descent through a saturated turbulent atmosphere. 

The continuity equations are powerful tools for illuminating fundamental properties of wind-water relationships. 
The conclusion discusses attractive paths along which this work should be extended. 

1. INTRODUCTION 

The study or time-depenclent relationships between 
wind fields and water distributions derives from the belief 
that knowledge of m-ind-water relationships is essential 
for an intelligent approach to the numerous hydro- 
~neteorological problems which hold the increasing direct 
interest of' mankind. Use oE wind-water relationships in 
meteorological analysis should assist the interpretation of 
radar and satellite observations. Knowledge of the rela- 
tionships between wind and water fields should assist our 
consideration of means to modify the weather, since the 
distributions 01 water are interwoven with the distributions 
of latent and sensible heat and the scale, intensity, and 
shape ol convective processes. 

This report discusses the application of continuity 
equations to several interesting problems. Some previ- 
ously published material (Kessler [4] and [ 5 ] ,  and Kessler 

1 Rfost of the work reported here was substantially completed while the author was 
employed at the Weather Radar Branch, Ocophrsics Research Directorate, Air Force 
Cambridge Research Laboratories The preparation of this paper has been supported 
by the U S Army Electronics Research and Development Laboratories under Contract 
DA 36039 SC 89099. The results given in Scctlons 6 and 7 were first presented at the 
Nrnth Weather Radar Conference at Kansas City, Mo., in October 1961, and were printed 
rn the Proceedings of that conference. 

and Atlas [6]), is briefly reviewed to give coherence t o  
this paper, but the emphasis here is on previously 
unpublished work. 

The principal assumptions have been: (1) Water vapor 
shares the motion of the air in all respects. (2) Condensate 
shares the horizontal motion of the air but falls relative to 
the air a t  a speed V. Vis a negative parameter t'hat niay 
vary with height but that is constant with time a t  any 
given height. (This is a great simplification of cloud 
physics processes-precipitation having a fall velocity V 
is assumed to forin as the result of condensation without a 
cloud phase. At, any particular height, all of the precipita- 
tion particles fall at  the same speed.) (3) The moisture 
capacity of the air is a function of height only. (4) The 
air density is considered locally steady and horizontally 
uniform. 

These premises lead to a continuity equation for 144, the 
density of water substance in all its phases minus the 
saturation rapor density, viz., 
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where u and v are the winds in the z and y (horizontal) 
directions, w is the wind in the z (vertical) direction, and 
p is the air density. G is a generation tterm that denotes 
the amount of water condensed from a unit volume of 
saturated air for each unit vertical distance of air travel; 
G=-p(dQ/dz), where Q is the saturation mixing ratio of 
water vapor in air (for derivation of equation (I), see 
[4] Section 2 ) . 2  

When 144 is negative, it shares the motion of the air 
and represents the amount of moisture that must be 
added to saturate the air; when M is positive, i t  falls 
relative to the air at  a speed V,  and represents the amount 
of condensate in saturated air. (3 plus A4 is the total 
water content. These associations between M and V 
imply instantaneous evaporation of condensate in un- 
saturated air, a Sact clearly perceived when one considers 
that the term MV=O wherever M < O .  The descent of 
condensate contributes a t  a rate Il.ilrV to the addition of 
34 in unsaturated air just beneath, the rate OS addition 
being unaffected by the magnitude of M in the drier air 
untilM>O. Only when fM>O can there be a Iallout of 
water substance. 

By treating condensate and vapor separately in two 
equations, it is practical to study the situation in which 
precipitation once formed does not evaporate in sub- 
saturated air. This is discussed further in section 5b 
below. 

I 

i 

2. THE DISTRIBUTION OF M ALONG VERTICALS 
WHERE THERE IS N O  HORIZONTAL ADVECTION 

This section summarizes results presented in several 
other places, and is included here to facilitate under- 
standing of the new results presented in following sections. 

A. V-j-w EVERYWHERE LESS THAN ZERO 
(MOTION OF CONDENSATE EVERYWHERE DOWNWARD) 

(1) Steady date solutions. 
Omission of compressibility simplifies the discussion 

without affecting the principal conclusions, and the 
following expression for the distributions of 34 in time and 
height is therefore considered . 

When V is everywhere the same, a condition most 
closely approached in snow, the third term in equation 
( 2 )  is zero. The steady-state vertical profile ol' M in 
a saturated atmosphere is then given by 

(3) 

a When A4 and 0 are in mixing ratio units, equation (1) is the same except that the 
last term becomes --MV@ln p / a z ) ,  and G=--dQ/idz. Density units arc used in this 
study because radnr reflectivity characteristics, visiiul appearance, and certain physical 
effects arc best understood in such tcrms. 

M 

FIGURE 1.-One-dimensional time-dependent and steady M-distri- 
butions in downdrafts (left) and updrafts (right), when G is 
constant. Values on the abscissa refer t o  the  total water content 
minus the saturation vapor content in gmJm.3 when H= 1 km. 
and G = l  gm. m.-3 km.? Vertical velocity w = ( 4  w m a Z / H ) X  
[z-  ( z 2 / H ) ] .  

This integral has been evaluated exactly for several 
values of V and a parabolic vertical distribution of 
updraft w, with w=O at 2 = O ,  H. A t._vpical result 
with N ( H ) = O  is shown in the right side of figure 1, 
taken from [5]. A discussion of the application of (3) to 
the descent of condensate in saturated downdral'ts is 
given toward the close of section 7. 

When V=O, the steady-state solutions we independent 
of the shape of the updraft distribution. Equation ( 3 )  
then gives, for updrafts, the liiniting lorm OI the distri- 
bution approached after a very long time with the 
unrealistic condition that condensate indefinitely retains 
negligible J'alling speed. The application to downdrafts 
of equations ( 2 )  and (3) with V=O has a iairly reasonable 
basis; the solution there represents the distribution of 
saturation deficit attained after sinking motion has 
continued for a very long time. This solution for constant 
G is illustrated in the left side o l  figure 1. 

When V is variable, the third term in (2 )  iiiust be re- 
tained and this equation's steady-state form is then not 
readily solved analytically. In such cases, finite difference 
approximations have been used to obtain the solutions. 
Figure 2 shows computed steady-state profiles 01 M in the 
model snowstorm situation indicated by table 1. These 
profiles suggest that some of the upper layers observed by 
radar in winter storms may be due to the kinematic princi- 
ples discussed here, rather than to the widely discussed 
generator and trail mechanism (Marshall [ IO] ,  for ex- 
ample), which, i t  is agreed, is the significant factor in most 
such observations. Since increases of fall velocity are 
generally associated with increases in particle diameter 
(to whose sixth power radar is sensitive), a layer of en- 
hanced radar reflectivity is not likely to accompany a 
layer of enhanced water',content that is due to the diver- 
gence of precipitrttion fall velocities. This and several 
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FIGURE 2.-Theoretical steady-state water-content profiles for various surface snowfall rates near the precipitation center of a winter 
storm. Thc maxima occur above layers in which the particles increase their fall speed during descent. The profiles have been c d -  
culated using the parameter distributions given in table 1. (From [6].) 

. other steady-state variable-V cases have been treated 
elsewhere (Kessler and Atlas [6]). 

1 50 cm./soc. used whcre Z'< -8' C ' wherc tcmpcraturc mcrcases sbovc -8' C .  lollow. 
ing the descent of A$ the spcrtl IS tak& ils a 11near Jncrpmo wlth temperature to 1m em ,I- 
SCC. at 0' C. 

(2) Timedependent solutions 
In the steady cases, the vertical distribution of A I  de- 

picts the individual changes following the descent of &f; 
Le., dLMldz=bL!/bz. When bVldz=O, d M / d z  is inde- 
pendent of Ad, and the steady-state profiles provide the 
key to easy determination of the time-dependent solutions. 
The packets of M change by an amount dM=(biV/bz) 
dz while descending through d z  in a time dt=dz/(V+w). 
The time-dependent solutions when V is invariant can, 
therefore, be constructed horn t8he steady-state vertical 
profile ol M and the curve showing the height of an A4- 
packet against time. Two sets of results of such calcula- 
tions based on the initial condition M=O and the upper 
boundary condition M ( H ) = O  are illustrated in figure 1 
and are discussed in detail in [4] and [ 5 ] .  When the fall 
velocity is a function of height, this method of solving for 
the time-dependent solutions is inadequate, but it is 
practical in such cases to use finite difference methods. 



16 MONTHLY WEATHER REVIEW JANUARY 1963 

Many properties of the variable-V solutions can be quali- 
tatively assessed from general considerations supplemented 
by simple computations. 

B. V+w SOMEWHERE GREATER THAN ZERO 
(MOTION OF CONDENSATE SOMEWHERE UPWARD) 

With V constant and the absolute magnitude of V 
anywhere less than the associated value of w, there is no 
steady-state solution valid throughout the depth of the 
updraft column. Hovever, in this case, where V is 
everywhere the same, the time-dependent solutions at  
points where (V+w) = O  are simply M=d&,+wGt, and else- 
where can be accurately- determined by a procedure only 
slightly more elaborate than that described above for 
determining the time-dependent solutions that precede a 
steady state. 

I 
(See [ 5 ] ,  Sec. 4.) 

3. THE STEADY-STATE PRECIPITATION RATE 
FROM A SATURATED, HORIZONTALLY UNIFORM 

UPDRAFT COLUMN 
I 

The application of continuity considerations shows that 
the rate of steady precipitation at  the ground is not gen- 
erally equal to the condensation rate in rising air vertically 

ter of an area of widespread updrafts. Equality of steady 
precipitabion and condensation rates is approached as 
the magnitude of the ratio of precipitation fall speeds to 
updrafts increases. The results presented here are an 
extension of section 5 in [4]. 

In  a steady-state horizontally uniform atmosphere, the 
horizontal advection terms are zero and the appropriate 
equation is: 

I above, even when there isno horizontal advection at  t'he cen- 

I 

Integration from the base 0 to the top H of the updraft 
column gives 

The second term on the right of (5 )  is the precipitation rate 
a t  the base of the updralt because at  the top MFO and, 
thereiore, V=O there; the third term is the condensation 
rate in the vertical column of unit cross section. 

The first term on the right is better understood after 
integration by parts, i.e., 

The &st term on the right of (7) vanishes because w=O 
at  both z=O and z=H. And the equation of continuity 
for air implicit in equation (1) states that h / b z  in the 
second term on the right of (7) is given by 

Substitution of (8) and (7) into ( 5 )  yields 

Equation (9) is a reminder that the horizontal divergence 
of the wind is implicit even in the one-dimensional forms 
of equation (1). The last term in equation (9) may be 
positive, negative, or zero, and is largely dependent on 
the ratio of characteristic fall speed to the characteristic 
~ p d r a f t . ~  The relative contribution of the last term in 
(9) is usually most important in the strong updraft 
situations where M is increased in greater proportion 
than w (because the fall speed of precipitation usually 
increases only a little with a large increase of intensity). 
From another point of view, note that it is when V is 
relatively small and only slowly varying, as in snow, that 
M is relatively quite large near the ground where the 
divergence is negative, and that the last term in (9) 
contributes substantially to the precipitation rate near 
the center of areas of widespread precipitation. In 
such cases the precipitation rate significantly exceeds 
that defined by the condensation term alone. Any 
excess of precipitation over condensation near an updraft 
core is, of course, accompanied by a deficit in areas 
away from the core. 

In  other cases, particularly where the melting zone, 
associated with a five-fold increase of particle fall speeds, 
coincides with the level of no horizontal divergence 
of the wind, the steady precipitation rate a t  updraft centers 
may be somewhat less than the condensation rate there. 
A physical approach to the results summarized by equa- 
tion (9) is illustrated in figure 5 of [4]. 

These results should be of some value for relating 
updraft velocities to observed precipitation rates and 
radar echo intensities. 

4. ASSUMPTIONS IMPLICIT IN THE RELATIONSHIP 
N (  V+W) =CONSTANT 

The equation 
N(V+w) =constant (10) 

where N is the concentration of precipitation particles a t  
various points along a vertical, has been used by several 

3 Equation (e) is the same whether the atmosphere is assumed to be compressible or 
incompressible. However, the distribution of tbe quantities therein and the magnitude 
of the integrals vary somewhat with considerations of compressibility. See, for example, 
Egure 1 of [41. 
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investigators, including the author [3], as a conservation 
law suited for a study of precipitation models. Some 
published work concerning precipitation mechanisms rests 
on one or more implications of this equation (lo), even 
where (10) is not explicitly invoked. Although many 
important limitations of (10) and its corollaries have long 
been recognized, it has not been generally realized that 
this equation often stands in violation of fundamental 
principles of continuity. 

The conditions under which (10) is valid can be 
examined by reference first to 

bM 

derived immediately from first principles. Equation (1 1) 
states merely that in the absence of horizontal advection, 
the local change of M is the sum of individual and vertical 
advective changes. Substitution for d-&f/dt from the one- 
dimensional form of (I)  gives 

dM bV b ln p -=wG-M -+Mw __. at bz az  

In  (12), let M=Nm, where m is the mass of each parti- 
cle in a collection of N particles. Then 

Suppose that combination and breakup processes among 
precipitation particles are weak and that the condensation- 
evaporation term contributes to the mass of individual 
particles, but not to  their number; i.e., precipitation par- 
ticles grow or diminish in size, but are neither created nor 
destroyed. This assumption may be applicable, for ex- 
ample, to the further development of a packet of small 
hail. Then equation (13) can be separated into two 
equations : 

dN bV b In p m -=--?nN --+mNw - at bz  bz 
and 

d m  
dt N -=wG. 

The temporal changes of particle concentration along 
the path of an individual packet axe given by 

dN d2 d N  dN -=-X-=(V+w) -. 
at at dz  dz 

Divide (14) by m, substitute (16) into (14), multiply by 
dz, and rearrange terms to obtain 

which applies along a vertical at any time if the distri- 
bution state is steady, but should be restricted to the flow 
following an individual packet (individual derivatives) 
when the distributions are unsteady. In  the idealized 
case of descent at constant fall velocity through a constant 
updraft, the term bV/(V+w) in (17) is zero, but there is 
still a decrease in the number of particles per unit volume 
because in a compressible atmosphere, effects of horizontal 
divergence, measured by the third terms in equations (14) 
and (17), accompany updrafts that are invariant with 
height. The effect oE the third term in (17) must in nature 
be more or less compensated by the tendency of precipi- 
tation fall speeds to decrease as the particles descend into 
air of increasing density. 

On13 if w i s  constant or, at least, everywhere quite small 
in comparison to V, can the integral of equation (17) 
without the compressibility term be represented by 
equation (10). The assumption that w is constant or 
everywhere small compared with Vis  quite similar to the 
assumption that the horizontal or vertical divergence of 
the wind is small compared with the vertical divergence of 
V. This may be clearly understood after consideration of 
the vertical derivative of equation (10); 

Equation (18) contains the term N(bw/bz),  which is 
properly omitted, since it is practically canceled by effects 
of horizontal divergence, as shown by the equation of 
continuity for air. Note that the term N(bw/bz) has 
no analog in equation (4). Use of equation ( IO)  across a 
layer where w varies implies neglect of horizontal diver- 
gence and violation of continuity principles; such use 
will be associated with important errors unless the mag- 
nitude of air speed changes is small. 

The inherent similarity of assumptions (1) that steady 
precipitation and condensation rates are equal and (2) 
that equations like equation (10) can be applied to the 
study of precipitation, can be understood in terms of this 
discussion. As fall speed increases relative to w and M, 
the integral of the horizontal divergence times M in 
equation (9) and the errors associated with equation (10) 
become relatively small, and these assumptions are 
satisfactory. 

Equation (10) is valid for estimating the change of N 
accompanying important changes of V which occur over 
such a short interval that variations of w are negligible, 
or over larger intervals in which w is everywhere much 
smaller than V. The application of equation (10) is 
possibly justified in the zone in which snow melts to form 
rain with an approximately fivefold increase of particle 
fall speed, especially when the effects of breakup of 
melting particles can otherwise be included or shown to 
be small. Other possible 
applications are to layers in which updraft speeds are 
uniform and where N a n d  Vcan be estimated at  a t  least 

(See sec. 7B and table 1 of [4].) 
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one height in the layer. In  no event, of course, are 
equations (10) and (18) even crudely sufficient for appli- 
cation over a region where w varies and (V+w) passes 
through or near zero. They are not applicable, for 
example, to  the study of hail. Where w attains about 

equation (IS), rather than equation (lo), must be em- 
ployed. 

It is, a t  least, of acaclemic interest to note that equa- 
tions (14) and (15) with boundary and initial conditions 
uniquely define m and N at  all heights when the mtisses 
of the particles are expressed in terms of their fall veloci- 
ties. The relation V=-1180D”2, where V is in m./sec. 
and D is in meters (Spilhaus [15]), can be used to give 
V=-130(6m/a)”e (m./sec.), where 7n is in grams. 
Use of this relationship with appropriate boundary and 
initial conditions allows solution of (14) and (15) for m 
and N where the updrarts are known at  every height and 
time-or, knowledge of m and N along the trajectory of 
M permits the determination of updraft distributions. 
Horizontal advection when present simply requires that 
equations (14), (15), and (17) be applied along the non- 
vertical trajectory of precipitation descending through 
the atmosphere. These equations can be viewed as R 
theory 01 nionodisperse-size-distributed precipitation, 
applicable in a layer where breakup and combination 
processes are weak and where fall velocities are every- 
where larger, but not necessarily much larger, than the 
updrafts. 

I the same magnitude as V, a more accurate integration of 

I 

5. TWO-DIMENSIONAL SOLUTIONS 

A. INSTANTANEOUS-EVAPORATION OF CONDENSATE IN 
SUBSATURATED AIR 

This section discusses time-dependent distributions of 
water substance and the methods for deriving them in two 
model cases where condensate fall speeds are twice the 
magnitude of maximum updrafts and in two cases where 
fall speeds are half the rnaximuni updrafts. Two sets of 
solutions are presented for each updraft-fall speed ratio : 
one set where there is instantaneous evaporation of con- 
densate in subsaturated air; the other where there is no 
evaporation of condensate in subsaturated air. The most 
nearly natural cases must lie between these extremes. 
The methods for obtaining solutions are instructive of 
basic interactions between air motions and water 
transport . 

The following equations have been considered in con- 
nection with the two-dimensional solutions : 

H i  

Z 

FIGURE 3.-Streamlines of the wind field corresponding to  equatious 
(20), (2l), and (22)  withf(z)=O, over the range O<%<L/2. 

Equation (19) applies to an incompressible atmosphere 
and equations (20) and (21) satisfy the corresponding con- 
tinuity condition, viz, bu/dx+ bwldz=O. In equations 
(31) and ( 2 2 ) ,  f(z) is the nondivergent environmental 
wind. These equations are solved in the layer 0 5  z< H ,  
with &I specified at  z=H. The limits of integration in 
the horizontal direction are usually chosen so that there is 
no horizontal wind at  these boundaries, for example, 
nL/2 <x 5 (n+ I)L/2, where n is an integer or zero when 
f(z) =O. Then the one-dimensional solutions already dis- 
cussed exist along the verticals a t  the horizontal limits of 
the problem area, and no boundary conditions other than 
the value 01 M at z = N  need be specified a t  these limits. 
Other dternatives are both practical and interesting but 
are not discussed further here. 

The wind field described by equations (20), (21), and 
( 2 2 )  withf(zj = O  is shown by figure 3. With V constant 
for M>O and V=O wherever M<0, and with initial con- 
dition M=O, boundary condition M(H) =0, and G=con- 
stant, equation (19) has been solved by finite difference 
methods for the field of M a t  various times. As noted in 
the introduction, these assumptions concerning 114 and V 
imply the instantaneous evaporation of condensate in any 
subsaturated air into which i t  falls. The top rows of 
figures 4 and 5 show solutions for two relationships bc- 
tween the uniform fall speeds of condensate and the maxi- 
mum uDdrafts. Details concerning. the method of solu- 
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tion and discussion of these solutions and associated 
budget parameters are contained in section 5 of [ 5 ] .  

B. NO-EVAPORATION OF CONDENSATE IN SUBSATURATED AIR 

Equation (19) can be solved in a modified way that 
admits of no evaporation of condensate once formed. 
Such a method is interesting because in subsaturated air 
the most nearly natural case must lie between the ex- 
tremes of no evaporation and instantaneous evaporation 
of precipitation. The revised method for solving (19) is 
based on the following. 

Consider two sets of equations, one set for condensate 
and one for vapor. Each set constitutes a restatement of 
the same conservation principle expressed by (19). We 
have 

M Z O  
dM -_ d z M - ~ + V ,  M > O  (23b) 

dt 
--=wG, p=O ( 2 3 ~ ~ ) ;  

w>O at 

(244 ; a%- 
--Wl P<O d t 

where A4 is now the d s  precipitation content, always 
positive or zero, and p is the vapor density minus the 
saturation vapor density, zero in saturated air and a 
negative quantity in unsaturated air. Note that equa- 
tion (23a) is applied only in saturated updrafts (elsewhere 
dM/dt=O); (23b) is applied to determine the motion of 
iM. Since q=O in all saturated updrafts, equations (24a) 
and (24b) are o€ concern only in following the motion and 
changes of p in unsaturated air. The term MdVldz 
does not appear in equation (23u) because Vis assumed 
constant for condensate. In  areas where M > O  and 
q < O ,  it is necessary to apply both sets of equations. 
There is no evaporation when the values of M and p are 
not added at  points where p is negative and h!‘ positive. 

The two-dimensional solutions have been determined 
by combining the host of one-dimensional solutions 
applicable along the trajectories (also streamlines in 
these cases of steady wind fields) of M and p. Figure 6 
illustrates the streamlines for V/w,,,= -2. Note that 
the streamlines of p are identical with those of the wind 
field, and that equations (24a) and (24b) can be combined 
and intepated to  yield p=po+GAz. The solutions for p 
are thus given by the vertical displacenients along air- 
streamlines; these displacenients have been determined 
by finite-difference and graphical methods. The time- 
height relationships for A4 and the steady-state profile OS 
M along each M-streamline have also been determined 
by combinations of numerical and graphical techniques. 
The results for M a r e  summarized in figure 7, which is the 
principal basis for the graphical development of time 
dependent solutions in this case. 

To obtain the no-evaporation solutions, it is necessary to 
know the boundary separating air where q=O from that 

where q<O; this is defined by the locus of particles that 
have risen in the updraft part of the cell as much as they 
had previously descended in the downdraft portion. 
Figure 6 shows, for three times, this demarcation as de- 
termined by finite-difference methods in the interior of 
the circulation cell and by exact methods on the lower cell 
boundary. Along the streamlines for condensate, growth 
of M i s  assumed to follow the curves of figure 7 only so 
long as M is in air that is saturated. As soon as M- 
parcels cross the boundary separating saturated from 
unsaturated air, i.e., separating air where q=O from air 
where q < O ,  growth of ceases and the remainder of the 
M history is due to  advection only. The no-evaporation 
solutions where V/wrnaX= -2  are shown in the lower TOW of 
figure 4. 

The solutions of the problem where V/wmaX= - 112 are 
shown in the lower row of figure 5 ;  these have been ob- 
tained in the same manner as described above, but with 
somewhat greater difficulty, especially where the streani- 
lines of M are loops. (See, for example, [5] figure 7.) 

The solutions in upper and lower rows of figures 4 and 
5 must differ only where precipitation falls into air which 
has been rendered unsaturated by the air’s prior descent. 
Other differences between corresponding diagrams, where 
not attributable to dralting uncertainties, are due to use of 
a smoothing equation in the program for digital computa- 
tion of instantaneous evaporation cases. Since large 
numerical differences between solutions of instantaneous- 
evaporation and no-evaporation models are confined to 
small areas in the cases shown, it has not seemed worth- 
while to  extend to the present study the detailed budget 
computations discussed in [ 5 ] .  

The solutions shown can be scaled to any distribution 
of atmospheric parameters which differ by constant 
factors from those used here, as discussed in [5 ] .  For 
new scale height 94 new generating function g, new 
vertical air speed ‘yKax, and new fall velocity nKaxV/ 
wrnaX, the new solutions denoted by di are given by 
d= M g  X / G H  which occur at new times y= Tycazz/ 
wmaxH. The solutions for given G, 
H, and w max can be applied to any horizontal scale, since 
the equation of continuity for air requires that stretching 
of the horizontal scale be associated with an equivalent 
stretching of the horizontal wind speed, when the verti- 
cal air speed is unchanged. 

The particular wind and water fields used here have 
some features demonstrably inconsistent with thermo- 
dynamic principles. For example, thermal changes must 
closely follow moist and dry adiabatic processes in sat- 
urated updrafts and unsaturated downdrafts, respectively. 
Since updrdts and downdrafts have equal intensity in our 
model wind field, the descending current for a representa- 
tive condit8ionally unstable initial lapse rate becomes 
considerably warmer than the ascending current a t  cor- 
responding levels, long before the circulation has pro- 
gressed to the illustrated final stages. Therefore, another 
model should be considered, say a radially symmetric 

(See sec. 2 of [5 ] . )  

. 
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0 0.5 L/2 L / 2  

X V =  -Im/sec , W max= 1/2m/sec 

- 

0.0 

trates the case in which there is no evaporation of condensate. 
The time 2700 sec. marks substantial overturning of the air in 
the circulation cell. Furt,her discussion is in the text. 

0.71 

y 0.5 
W 

N 0.41 

0.3 1 

FIGURE 4.-Analyzed fields of water content based on a steady wind field of shape as shown in figure 3, maximum vertical air speed of 0.5 
m./sec., uniform condensate fall speed of 1 m./sec., and lapse of saturation vapor density of 1 gm. me-3 km.+ At time =0, the 
atmosphere is everywhere saturated. The heavy lines show the concentration of condensate in gm./m.3 and the light lines show the  
amounts of vapor required to  saturate the air. The upper row illustrates the  case in  which condensate evaporates instantly when it 
fallsinto air tha t  has become unsaturated by virtue of its history 
in the descending branch of the circulation: the lower row illus- 

0.5 L/2 L/2 
X 

FIGURE 6.-Streamlines of condensate (light) and of vapor (heavy 
lines corresponding t o  those shown in figure 3). The paths of 
condensate apply t o  the case V/wmoz= -2. The boundary sepa- 
rating saturated from unsaturated air is shown for times t=O, 
0.45 Hlw,,,,, 0.90 H/wmaz, and 1.35 H/wm.. by the lines of in- 
termediate weight. Integers on the streamlines of Condensate 
refer t o  the  steady-state solutions shown in figure 7 .  

0.2 1 
O*' t 1 
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INSTANTANEOUS EVAPORATION OF CONDENSED WATER IN UNSATURATED AIR 

I .  
0 .  

0 .  

0. 
5 0. 
Y w o .  
ru 0. 

0. 
0. 

0 .  

225 sec. 45-0 sec. 

NO EVAPORATION OF CONDENSED WATER 
I .o 
0 . 9  
0 . 8  

- 0 . 7  

Y w O . 5  

E 0 . 6  

0 . 4  
0.3 

0 . 2  

0. I 
n 

675 sec. 

0 '0.5 L/2 L/2 

FIGURE 5.-Same as figure 4, except that wmaz= 

0 0.5 L/2 L/2 0 0.5 L/2 L/2 

X V=-lm/sec W max=2m/sec 

.2 m./sec. and the time for substantial overturning of the airIis reduced:tol675:sec. 

FIGURE 7.-Diagram used t o  determine time-dependent distribu- 
tions of condensate illustrated in lower row of figure 4. The 
numbered lines descending from the upper left corner are the 
steady-state M-distributions along the streamlines denoted by 
corresponding integers in figure 6. The time intervals occupied 
by M-packets descending from one height t o  another are given 
by the lines ascending from the left. 
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IF 0 

FIGURE 8.-Photograph of the time-height recoi-d made with a 1.25-cm. vertically pointing radar. Vertical lines indicate 5-min. time 
Wcak generators and trails also occur in the second row; intervals. Precipitation stalactites are most pronounced in the second row. 

trails without detectable generators occur in the first row; and strong generators are in the fourth row. 

type, wherein the downdraft area is much more widespread 
and the downdraft intensities correspondingly more 
gentle than the updrafts. The solutions in such cases 
can be produced in just the manner already shown. At 
the updraft center, the solutions are the same as those 
already discussed when the vertical velocity distribution 
is the same as that given by equation (20) ; elsewhere, the 
principal differences are described in terms of a reduction 
of the linear extent of the inflow from the descending 
branch of the circulation, decreased linear extent of the 
outflow aloft, and somewhat higher precipitation effi- 
ciencies in the evaporation cases, since less dry air is 
interposed between precipitation aloft and the ground. 

I t  is obvious that a higher percentage of the condensate 
formed in updrafts must reach the ground when updrafts 
and conipensatiiig downdrafts are separated by great 
distances, and when downdrafts are spread over wider 
area and are therefore comparatively weak. It is also 
obvious that for a given circulation in an initially unsatu- 
rated atmosphere, more of the water condensed in updrafts 
will evaporate again before reaching the ground than in 
the cases illustrated here. 01 course, many kinds of circu- 
lation caii be imagined, and a study incorporating thermo- 
dynamic principles quantitatively would be necessary to 
determine which ones probably occur. 

The method of solution by use of streamlines rather 
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than a rectangular grid is the more inherently accurate 
and can be modified at the cost of added complexity to  
take account of various rates of evaporation. For exam- 
ple, the streamline method can be used to study instan- 
taneous evaporation by adding values of M > O  atid q<O 
algebraically after a short time interval to define a new 
field of l M f q  from which the new locus of M+q=O can 
be determined. It seems however, that little would be 
gained by introduction of complexities of this kind without 
generalization of the assumptions discussed in the 
introduction to this study. 

6. THE KINEMATIC BASES OF GENERATORS 
Generator is the name given to the sources of precipita- 

tion streaks (usually snow) observed visually and by 
radar; like practically all precipitation sources, generators 
are identified with vertical circulation of air. A history 
of a generator circulation and the processes affecting it 
and its associated trail of snow is incorporated in the water 
content distribution. Generators and trails have been 
studied extensively by Marshall [lo], Atlas [l], and 
Douglas, Gunn, and Marshall [a ] .  Weak generators are 
shown in figure 8. In this section, the application of 
kinematic theory is shown to provide bases for estimating 
the lifetime of generators arid the strength of their vertical 
currents frorn radar and visual observations. 

I n  this investigation, it has been assumed that the 
generating circulation is given by equations (20), (21), 
and (22 )  with J(z )=O;  the environmental wind does not 
vary with height in the generating layer. I n  figure 9, the 
wind shear below the generating level has been taken as 
5 m. set.-' km.-' The generating cells are 1 kni. deep and 
G, in equation (19), has been taken as 0.7 gin. ITI . -~  km.-', 
a representative value for winter near the BOO-mb. level. 
Precipitation in the trails falls 1 m./sec., representative of 
snow, without growth or diffusion. The water density 
distributions within the cells have been scaled from those 
illustrated in the upper rows of figures 4 and 5 according 
to the discussion given in section 5, and the trails plotbed 
in accordance with the equations that relate fall velocity 
and wind shear to  position relative to the generators, as 
discussed in the references. 

With the given assumptions, all the possible shapes of 
the M-distributions are implied by the possible range of 
the ratio VJW,,~. The ratio - V / W , ~ ~ = ~ ,  is given by the 
patterns at the left of figure 9, and - V/wmax=1/2 is given 
by the patterns a t  the right. The labeled w:Lter contents 
are for maximuni updrafts of 0.5 and 2 m./sec., respec- 
tively. Tn both cases, the circulation starts a t  time t=O 
and proceeds until t= 1.44 N/w,,, when substantial over- 
turning has occurred,* and then ceases. In these models, 
the precipitation that descends into air that becomes sub- 
saturated in the generator downdrafts evaporates instantly. 

Many features of the model distributions in figure 9 
are similar to the trails observed visually or by radar. ln 
both model distributions, the maximum value of M is 

4 1.44 Hlwm,,=48 and 12 min., for left and right patterns, respectively. 

inside the generator during tlie earlp, active stages and 
in or near the generator during most of the period of simple 
l'ullout. Second, water content distribut,ions in the trail 
of the, generator with weak updrafts are constant or 
slowly varying over the trail length, in good qualitative 
agreement with observations of inany trails. The short 
trails and large condensed water contents of the model 
generator on the right are suggestive of manj- observations 
thltt have been subjectively- and qualitatively associated 
with relatively vigorous convection. Third, the lifetimes 
of the model generators confirm our mostly casual observa- 
tions that generators seen on radar and cirrus and alto- 
cummulus floccules seen visually, are often tracked for 
tens of miles and as many minutes. 

Study not detailed here shows that the most prominent 
features of the water distribution shapes in the left and 
right of figure 9 are little different in association with 
respectively weaker and stronger updrafts. However, 
where -V and toTnaz are about equal, the shapes of the 
condensed water distribution are very sensitive to the 
value of V/wma2. This indicates that generator and trail 
observations might be useCully separated into classes where 
updrafts are either less than or greater than the terniinal 
lalling speeds of the precipitation involved. A uniform 
long trail such as that illustrated on the lel't oE figure 9 is 
reasonable only when the fall speed ol' the precipit a t' ion 
exceeds the updraft; the frequent occurrence of this type 
of observation indicates the prevalence ol' convective circu- 
lations in snow with vertical speeds rather less than 1 m./ 
sec. The same core-water content distributions and con- 
clusions are valid if the wind field is radially symmetric or 
il the generator dowiidral'ts are more widely dispersed in 
a two-dimensional configuration than assunied here. 

1Iie solutions suggest inquiry into other quantitative 
relationships between the possible observable cell and trail 
parameters and the ratio V/wma2. Where the core updraft 
profile is parabolic with height and precipitation fall veloc- 
ities are uniform as above, and where the air circulation is 
steady from t=O to t==CH,'w,,,, the following relatioriship 
gives the duration of st,eady precipitation at the midpoint 
of the generator base : 

H 
Wmaz 

r i  

I 

t,=- [C-(--K-l)-'/2 tan-' (--K--l)-''*], (25)  

where K is equal to V/w,,, and is less than -1. When 
there is simple descent in the region below the generutor, 
t ,  limy be related to the vertical depth D, of the part of a 
trail with a steady core intensity by the relation D,=t,V, 
and the duration t (of the whole precipitation-releasing 
circulation) might, be enipirically related to the total h i 1  
depth by the relation D-tV. 

The iiumerical value of the steady core-water content 
at the generator base and in t8he trail under tlie same 
conditions as above is given by 

M=ZHK ( -K-1)-1'2 [I - tan-' (-K- 1)-"211, (26) 

where -(J is the average value of G in the generator layer. 
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The maximum steady water content a t  the generator 
base for a fixed amount of air overturning occurs when K 
is such that steady conditions within the generator core 
are just attained when the air circulat,ion stops. When 
KL -1, there is no steady state; the methods used in 
these cases to compute the time-dependent M-distribu- 
tions in the updraft cores are discussed in section 1. These 
methods have been used to obtain, in figure 10, the dashed 
part of the curve which shows the maximum water con- 
tents a t  a point midway between base arid top of the 
generator. 

7. THE STALACTITE PROBLEM 

Stalactites, as observed by vertical-pointing radar, 
are illustrated in figure 8. The best published discussion 
of stalactites is probably contained in Douglas, Gunn, 
and Marshall [ 2 ] .  These radar-observed phenomena 
occur when stratiform precipitation descends into dry 
air layer, thereby destabilizing it by evaporative cooling. 
The depth to  which overturning of the air then occurs 
and the extent of the associated downward projections 
of precipitation (stalactites) appear to  be governed by 
such factors as the initial vertical distributions of tem- 
perature and moisture and the precipitation rates. 
In  the stalactite layer, precipitation descends most rapidly 
in the downdrafts and is slowed or suspended in the 
updrafts. Moisture descends irregularly, and new con- 
vective cells probably arise beneath the old as the precipi- 
tation lowers. Stalactites are more pronounced in snow 
than in rain, in part because evaporation from relatively 
fast-falling rain is associated with a smaller vertical 
gradient of the cooling rate than snow is. In  this section 
the application of kinematic theory shows that the sta- 
lactite observations may be explained by vertical currents 
of about 1 m./sec. 

Equations (19), (20), (21), and (22) describe a model 
stalactite situation provided that the condition M= 
constant is applied a t  z=H and the interior of the cir- 
culation cell initially contains dry air. The outstanding 
feature of this problem is the M-discontinuity that sepa- 
rates descending condensate and the dry air beneath. 
A proper solution of the instantaneous evaporation case 
includes accurate delineation of this boundary. However, 
the digital techniques described in [5] are inadequate 
in the presence of this discontinuity, and the extension 
of the computational method used to obtain the solutions 
shown in the lower rows of figures 4 and 5 is too laborious 
for hand calculation and has not been programed for a 
computer. 

A simpler problem is defined by the assumption that 
evaporation is very slight (just enough to start the con- 
vective cell and to keep it going!) and that the leading edge 
of precipitation is therefore given by the locus which con- 
nects points descending a t  speed (V+w) along stream- 
lines of M>O. For the two-dimensional example with 
- V=2wmaZ, isochrones of the leading edge starting with 

-x- 

FIGURE Il.-Horizontally tending lines are isochrones marking the 
leading edge of nonevaporating precipitation which descends from 
z = H a t  t=O. Descent through the wind fieldwhere V/wma,= -2 
is along the vertically tending streamlines. Time labels apply if 
V= - 1 m./sec., wmoz=0,5 m./sec., and H= 1 km. 

t=O at  z=N are illustrated in figure 11. An analytical 
expression for the stalactite length in this no-evaporation 
case is given by V(t,-t,), where t ,  and td are the times 
required for -condensate to traverse the updraft a t  x=O 
and the downdraft a t  x=L/2, respectively. Where V 
is constant and the vertical w distribution is parabolic, 
the stalactite length S is given by 

The graph of equation (27) is given in figure 12. 
A more probable wind structure associated with sta- 

lactites consists of a central core of strong downdrafts 
surrounded by a ring of much weaker updrafts. At 
some distance from the strong downdraft, the vertical 
motion is zero. In this case, the stalactite length is 
deduced horn study of precipitation descent in the down- 
draft core and in the no-draft region considerably removed 
from the core. The applicable equation, whose plot is 
also illustrated in figure 12, is the same as equation (27), 
except that the term (1 /2- )  tan -l (l/Y-) is replaced 
by 1/K. 

i 
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FIGURE l3.--The time for precipitation falling at 1 m./sec t o  de- 
scend through a depth II= l km. is indicated for two downdrafts 
(lower curves), two updrafts, arid a quiet atmosphere. I n  each 
case, precipitation is assumed to  evaporate instantly in sub- 
saturated air, the initial distribution of M is M= - 24- ( z / H )  
(gm./m.3), and the upper boundary value is M= 1 gm./m.3 

I j = m x  

O I O O  

FIGURE 12.--The ratio of stalactite length S to  cell depth H is 
plotted ayaiiist - V/W,,~,,= for cases of 110 evaporation in two kinds 
of wind fields discussed in the tcxt. 

The no-evaporation plots in figure 12 represent conserv- 
ative estimates of stalactite length, in that greater 
lengths are suggested by an elementary study of evapora- 
tive effects, described below. With this conservatism of 
the present theory in mind, consider V=-1 m./sec. in 
the radially symmetric case, and note that a circulation 
cell with maximum downdrafts of 2 m./sec. would give 
stalactites half the depth of the cell. If updrafts are 
locally as widespread and as strong as the downdrafts, 
the maximum stalactite lengths could be as great as the 
cell depths with maximum vertical currents of only 
0.5 ni./sec. If the atmospheric circulations in depth are 
about the same as their horizontal spacing, then the stalac- 
tite observations themselves suggest that vertical drafts 
of about 1 m./sec. are all that is required to explain the 
observed stalactite lengths. While these analyses of the 
generator and stalactite mechanisms by no means prove 
that intense vertical drafts do not exist, they do provide 
a rational interpretation of the radar observations and of 
light turbulence observed from aircralt flying near the 
bases or tops of altostratus layers. 

This study ol the stalactite mechanism has been ex- 
tended by consideration of the instantaneous evaporation 
case as it applies along the special lines s=0 and x=L/2, 
where there is no horizontal advection. The simple 
equations that facilitate solution along these verticals 
are based on an extension of reasoning discussed in 
sections 1 and 2. Consider first the case of instantly 
evaporating precipitation falling into an unsaturated 
updraft. The air above tlie level to which the leading edge 

of precipitation has descended is saturated and condensn- 
tion therein causes the growth of precipitation above that 
leading edge. The vertical distribution of precipitation in 
the updraft above the precipitation base is, therefore, the 
same as that previously computed in the one-dimensional 
updralt case except for the additive constant in equation 
(3), M(N), the precipitation water content at  the upper 
cell boundary. Equation ( 3 )  also defines condensate 
distributions in tlie saturated descending air overtaken by 
precipitation falling along the line z=0. The t h e  
between the initial state and the final steady state in a 
small height interval can be calculated lroiii the steady- 
state final condition, the initial condition, and the wind 
field. The equation used to determine the tiiiie elapsed is 
a finite-difference forinulation of equation (1) for the one- 
dimensional incompressible case, viz.) 

, . , LTY' .  - 

The distributions of all quantities in equation (28) 
except At are specified, and it is therefore simple to solve 
for At.  Equation (28) has been solved for At in five 
different vertical air currents where the initial moisture 
distribution is defined by Mi= ( - 2 + z / H )  gm./m.3, 
6=10-~ gm./m.4, and II=103m. The results are illus- 
trated in figure 13, where i t  is seen that the pasticular 
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assumptions regarding the rate of addition of moisture a t  
z=H and the iiiitial dryness of the air lead to a balance 
between the vertical advection of dry air and the descent 
of condensate in the updraft cases. In  these updraft 
cases, therefore, stalactite lengths as measured by the 
difference in height of the precipitation base at  x = O  and 
x=L/2 would be indefinitely long. Of course, the cell 
that gives rise to the stalactite phenomenon does not have 
an indefinitely persisting circulation. If it did, it would 
eventually become saturated throughout by a return 
flow of vapor from its downdraft portion and the portion 
ol‘ the cell in which precipitation is held aloft would 
become indefinitely smaller with time. Circulations 
actually decay before such limits are reached. 

The foregoing leads to another interesting consideration. 
The steady precipitation emerging beneath the updrafts 
of a convective cell imbedded in a saturated atmosphere 
has a higher intensity, and that emerging from the down- 
draft side has, due to  evaporation in saturated downdrafts, 
a smaller intensity than the precipitation entering the cell 
a t  the top. This indicates how, in a vertical air circula- 
tion, stratiform precipitation falling through the circula- 
tion is redistributed and emerges with horizontal gradients 
of intensity. The distributions for a saturated atmosphere 
are easily computed, and may be useful in interpreting 
radar records where small convective cells are established 
within widespread precipitation by microphysical effects, 
as is often the case, For example, near the level where 
snow melts to rain (Wexler 1161 and Newell Ill]). 

8. CONCLUSIONS 
The continuity equations are powerful tools for illu- 

minating fundamental properties of wind-water relation- 
ships. The greatest advances should come as theory and 
observation are combined, so that each supplements and 
complements and indicates paths of useful development 
for the other. Application of kinematic theory to analyses 
of conventional data with satellite photographs and distri- 
butions of radar reflectivity and Doppler velocity should 
yield improved descriptions of the wind field accompanying 
precipitation and of the associations of these fields with 
wind shear, static stability, and other quantities of dy- 
namical significance. 

It is important to generalize the theory to account for 
and evaluate the bulk effects of cloud physics processes. 
This avenue of study is relevant to the problems of weather. 
modification by such means as artificial seeding. A pre- 
liminary discussion of such a generalization is contained 
in IKessler and Newburg [7]. 

As dynamical numerical models of the atmosphere 
become more sophisticated, equations of continuity for 
cloud and precipitation in more nearly natural forms will 
be incorporated therein and should reveal how the air 
motions, water transports, and cloud physics processes 
interact to determine the scales, shapes, and intensities of 
coiivective events. The recent works by Li11y [ t i ] ,  Malkus 
and Witt 191, Ogura and Phillips [12], Saltzman [13], and 

Sasaki [14], for example, may provide suitable thermo- 
hydrodynamic frameworks Ior such advanced studies. 
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